The Structure and Absolute Configuration of Solstitialin, $\mathbf{C 1 5}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{2 0}} \mathrm{O}_{5}$

By W.E.Thiessen* and Håkon Hope
Department of Chemistry, University of California, Davis, California 95616, U.S.A.

(Received 22 April 1969)
The molecular structure of solstitialin, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$, a new, toxic sesquiterpenoid from Centaurea solstitialis L., has been elucidated via its crystal structure. Solstitialin crystallizes in the orthorhombic system with $a=10.007$ (4), $b=22.789(4), c=5.844$ (3) \AA, space group $P 2_{2} 2_{1} 2_{1}$ with four molecules in the unit cell. Copper $K \alpha$ data were gathered by use of a Picker automatic diffractometer. The structure was solved by symbolic addition and tangent formula procedures and refined by Fourier and full-matrix least-squares methods to a final R index of 0.026 (1506 reflections). Estimated standard deviations of the bond lengths not involving hydrogen are $0.002-0.003 \AA$. The absolute configuration was determined by use of the anomalous scattering from oxygen. Solstitialin possesses the guaianolide structure

and has the absolute configuration shown. The lactone carbonyl group is involved in intermolecular hydrogen bonding directed in a plane about 65° from the plane of the lactone group.

Introduction

Continued ingestion of yellow star thistle (Centaurea solstitialis L.) by horses has been associated with a syndrome variously called 'chewing disease' or 'star thistle poisoning' (Cordy, 1954; Fowler, 1965) in which the horses have difficulty in eating and drinking, sometimes eventually dying by starvation. Neutral aqueous-ethanolic extracts of the plant have been shown to be toxic in moderate dosage to mice, rats and monkeys (Mettler \& Stern, 1963). Application of solvent partition and chromatographic techniques to this fraction has resulted in the isolation of a new sesquiterpene lactone, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$, called solstitialin (Thiessen, Hope, Zarghami, Heinz, Deuel \& Hahn, 1969). This material is lethal to mice at low dosage levels (M. E. Fowler, private communication).

Chemical and spectroscopic investigation of solstitialin accounted for the five oxygen atoms as three hydroxyl groups and a γ-lactone moiety. The carbonyl frequency of $1740 \mathrm{~cm}^{-1}$ in the solid state is anomalously low for a γ-lactone, but shifts to the normal $1770 \mathrm{~cm}^{-1}$ in pyridine solution. The nature of the carbon skeleton, however, remained unknown although it was clear from spectral data that solstitialin is an unusual sesquiterpenoid in that it contains no methyl groups. Crystallographic analysis was therefore decided upon

[^0]and attempts to form a heavy-atom derivative were made. The failure of these attempts (undoubtedly associated with the lability of the material toward acid) led us to apply direct methods of phase determination to the structure of solstitialin itself.

Experimental

The minuscule amount ($c a .2 \mathrm{mg}$) of purified solstitialin available was a deterrent to experiments in recrystallization for the purpose of obtaining well-formed crystals. From the sample at our disposal a singlecrystal fragment of approximate dimensions $0.1 \times$ $0.1 \times 0.3 \mathrm{~mm}^{3}$ was obtained by cutting. The crystal was mounted with its long direction approximately parallel to the φ axis of a Picker diffractometer equipped with a full-circle goniostat. The crystal was found to have orthorhombic symmetry with the systematic absences ($h 00,0 k 0,00 l$ absent for odd indices) uniquely determining the space group to be $P 2_{1} 2_{1} 2_{1}$. Cell dimensions obtained from a least-squares treatment of angles measured on the diffractometer were $a=10.007$ (4), $b=22.789$ (4), $c=5.844$ (3) $\AA\left(t=24^{\circ} \mathrm{C}, \lambda \mathrm{Cu} \mathrm{K} \mathrm{\alpha}_{1}=\right.$ $1 \cdot 54051 \AA$). The density calculated for a unit-cell containing four molecules of composition $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$ is 1.395 , and the density estimated by flotation is $1.39 \mathrm{g.cm}^{-3}$.

The intensities of 1659 reflections accessible with $\mathrm{Cu} K \alpha$ radiation below $2 \theta=160^{\circ}$ were measured with the diffractometer in automatic mode by use of the
$2 \theta-\theta$ scan technique at a scan speed of $1^{\circ} \mathrm{min}^{-1}$. Background counts were taken at each end of the scan range. Partial monochromatization was accomplished with a Ni filter and a pulse height analyzer in conjunction with a scintillation detector. An automatic attenuator mechanism was used to keep the count rate below 10^{4} c.p.s. Lorentz and polarization corrections were applied to the observed intensities, but no absorption or secondary extinction corrections were applied. Reflections for which $3 \sigma(I)$ exceeded I (net) were recorded as 'unobserved', and were given zero weight in subsequent least-squares calculations. The 1506 'observed' reflections were assigned estimated standard deviations based on s values for an observed number of counts according to the expression $s(N)=N^{1 / 2}+0.005 N$.

Solution and refinement of the structure

Information from various sources indicated that the solution of problems of similar magnitude by direct methods had required nearly an hour of CDC 6600 computer time, and we were initially reluctant to embark on a venture that seemed likely to be rather timeconsuming on the less powerful computer available to us. Since the c axis is quite short, and the projection is centrosymmetric, we felt that it might be worthwhile to attempt a two-dimensional solution.

A set of about 40 signs for $E_{h k 0}>1 \cdot 5$ was determined by the Sayre equation, and the corresponding E map calculated. The molecular structure was unknown, so no model was available to fit to the map, and none of the several trial structures more or less compatible with the map could be successfully refined, giving us good reason to abandon the two-dimensional project.

The 122 three-dimensional E 's above 1.65 (about six per 'heavy' atom) were then selected for phase determination by the symbolic addition-tangent formula procedure. The normalized structure factors are given in Table 1.

Examination of the list of $2243 \Sigma_{2}$ relationships led to the choice of the reflections $520,014,405$ and 830 for arbitrary choice of phases to specify the origin and enantiomorph (Karle \& Hauptman, 1956). Application of the symbolic addition method with three symbols a, b, and $c,\left(a=\varphi_{12,9,1}, b=\varphi_{6,16,0}\right.$, and $\left.c=\varphi_{5,16,1}\right)$ led in sixteen cycles (fewer would have sufficed but an input error was not caught until after the eighth cycle) to phases (absolute and symbolic) for $77 E$'s in terms of two symbols, the phase of $6,16,0$ having been consistently indicated as π. The sum of the products indicating a certain phase was required to be $\geq 11 \cdot 4$ before it was accepted as known.

Starting with the two remaining symbols set to 0° ten cycles of tangent formula refinement led to a set of 119 phases from which an E map (Fig. 1) was calculated. Only two of the 21 largest peaks in this map were not chemically reasonable. Structure factors based on the other nineteen had an R index of $0 \cdot 30$, and the

Table 1. Normalized structure factors $(\times 100)$
E_{o} were calculated from F_{o} by use of the scale factor and overall temperature factor from a Wilson plot, and E_{c} are derived from the refined structure. Δx is the difference (in millicycles) between phases determined with the tangent formula and those from the final structure. Three reflections, marked with *, were not used in the calculation of the E map.

corresponding Fourier synthesis revealed the remaining carbon atom.

The structure arrived at by Fourier methods was refined by use of a full-matrix least-squares program capable of adjusting 163 parameters at a time. The parameters which could not be refined during one cycle were adjusted in the following cycle (the contributions of the corresponding atoms to the structure factors were of course always included). With anisotropic temperature factors for all 'heavy' atoms and excluding hydrogen atoms, three refinement cycles led to an R index of about $0 \cdot 07$. All hydrogen atoms were then located from a difference Fourier map. Inclusion of the contributions of the hydrogen atoms to $F_{\text {calc }}$, with B (iso) $=4 \AA^{2}$ immediately lowered R to about $0 \cdot 03$. Several cycles of least-squares refinement were then carried out, during which it was attempted to refine together those atoms whose parameters had the largest covariance coefficients, as determined by inspection of the inverse normal equation matrix. Not surprising$l y$, it was found that parameters for 'heavy' atoms and their attached hydrogen atoms frequently were fairly strongly correlated.

As an experiment the structure was first refined to convergence by use of the Hughes (1941) weighting scheme $\left[4 F_{o}(\mathrm{~min})=6.9\right.$] with the final R index having a value $R=0.0272$ for 'observed' reflections. The weighting was then changed to a $1 / \sigma^{2}(F)$ scheme, giving a final R index of 0.0264 for 'observed' reflections and 0.0306 for all measured. As a result of the change in weighting, one 'heavy' atom parameter
shifted by as much as 2σ and shifts in a few of the hydrogen parameters approached 3σ, while the remaining parameters changed imperceptibly. The final parameters from the $1 / \sigma^{2}(F)$ refinement are given in Tables 2, 3, and 4. Table 5 gives a comparison of observed and calculated structure factors.

Table 2. Positional parameters (with estimated standard deviations) for carbon and oxygen atoms

	x	y	z
$\mathrm{C}(1)$	$0.7289(2)$	$0.1630(1)$	$0.8309(4)$
$\mathrm{C}(2)$	$0.8677(2)$	$0.1557(1)$	$0.7207(5)$
$\mathrm{C}(3)$	$0.8625(2)$	$0.1032(1)$	$0.5550(4)$
$\mathrm{C}(4)$	$0.7224(2)$	$0.0786(1)$	$0.5800(3)$
$\mathrm{C}(5)$	$0.6668(2)$	$0.1007(1)$	$0.8040(3)$
$\mathrm{C}(6)$	$0.5159(2)$	$0.0990(1)$	$0.8234(3)$
$\mathrm{C}(7)$	$0.4545(2)$	$0.1346(1)$	$1.0193(3)$
$\mathrm{C}(8)$	$0.4187(2)$	$0.1970(1)$	$0.9459(4)$
$\mathrm{C}(9)$	$0.5394(2)$	$0.2364(1)$	$0.8953(4)$
$\mathrm{C}(10)$	$0.6419(2)$	$0.2110(1)$	$0.7326(3)$
$\mathrm{C}(11)$	$0.3373(2)$	$0.0961(1)$	$1.0987(3)$
$\mathrm{C}(12)$	$0.3827(2)$	$0.0347(1)$	$1.0284(3)$
$\mathrm{C}(13)$	$0.2050(2)$	$0.1097(1)$	$0.9782(4)$
$\mathrm{C}(14)$	$0.6631(2)$	$0.0451(1)$	$0.4287(4)$
$\mathrm{C}(15)$	$0.6560(2)$	$0.2311(1)$	$0.5231(4)$
$\mathrm{O}(16)$	$0.8898(2)$	$0.1208(1)$	$0.3246(3)$
$\mathrm{O}(17)$	$0.4776(1)$	$0.0373(0)$	$0.8691(2)$
$\mathrm{O}(18)$	$0.3207(1)$	$0.0992(1)$	$1.3389(2)$
$\mathrm{O}(19)$	$0.3406(1)$	$-0.0113(1)$	$1.1008(2)$
$\mathrm{O}(20)$	$0.1022(1)$	$0.0715(1)$	$1.0546(3)$

certainty regarding the requirements for success. We therefore feel that it may be of value to give some statistical information relating to the present case.

As is indicated by the E map (Fig.1) about six E 's for each non-hydrogen atom were sufficient for easy recognition of the main features of the molecular structure. An impression of the quality of the E 's and their assigned phases may be obtained by inspection of Table 1. The agreement between 'experimental' E 's and those calculated from the final structure is very good ($R=0.04$). All zero layer E 's were assigned correct phases, whereas for the remaining reflections the phases used in the E map deviate by an average of 40 millicycles (14.7°) from the final ones. The tangent formula refinement had nearly converged, with most shifts being less than 2 millicycles in the final cycle.

We attribute the ease with which the solution emerged mainly to two factors: the relatively large proportion of 'centrosymmetric' reflections, and the inclusion of reflections up to $2 \theta=160^{\circ}$, the latter permitting the establishment of a large number of relationships. The total IBM 7044 time spent for the symbolic addition - tangent formula procedure was about 35 min . As has been suggested by Oh \& Maslen (1968), a more economic strategy probably would have been a more moderate use of the Σ_{2} procedure and heavier reliance on the tangent formula.

Discussion

Solstitialin represents the first example of a guaianolide, a class characterized by fused five- and seven-

Although the methods used in the solution of this structure have been employed successfully in numerous cases, many users approach them with a feeling of un-

Fig. 1. Composite E map projected along [001]. Crosses indicate the atomic positions in the refined structure.
membered rings in addition to the lactone ring, to be isolated from Centaurea spp. The sesquiterpene lactones which have been reported (Suchy, Samek, Herout \& Šorm, 1965) are germacranolides, which possess a single ten-membered ring in addition to the lactone ring. The vicinal hydroxylation of $C(11)$ and $C(13)$ has, to our knowledge, not been observed previously in sesquiterpene lactones.

The atomic numbering scheme is shown in Fig. 2(a), and the observed bond distances and angles are given in Fig. 2(b) and (c) and interatomic distances and angles involving hydrogen atoms are given in Tables 6 and 7. The distances and angles for the most part are consistent with common experience. A difference of about $0 \cdot 1 \AA$ between alkyl and acyl carbon-oxygen distances has been noted several times in the literature
(Karle \& Karle, 1966a; Kim, Jeffrey, Rosenstein \& Corfield, 1967 and references cited therein). In solstitialin, the alkyl carbon-oxygen distance ($1.482 \AA$) is $0.15 \AA$ greater than the acyl carbon-oxygen distance and $0.06 \AA$ greater than an average carbon-hydroxyl oxygen atom bond-length. β-D-Glucuronolactone (Kim, Jeffrey, Rosenstein \& Corfield, 1967) contains both a γ-lactone and the ether linkage of a hemiacetal, also in a five-membered ring; the alkyl carbon-oxygen distance in the lactone group is significantly longer $[1.475$ (5) vs. 1.446 (5) \AA]. The even longer bond in solstitialin may reflect the fusion of the γ-lactone to a seven-membered rather than to a five-membered ring. The bond angles of the seven-membered ring are all greater than the tetrahedral angle, indicating a general flattening of the ring.

Table 3. Anisotropic thermal parameters for carbon and oxygen atoms and their estimated standard deviations

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
C(1)	2.23 (7)	$2 \cdot 80$ (7)	$2 \cdot 61$ (9)	-0.29 (6)	-0.08(7)	-0.07 (7)
C(2)	2.33 (8)	$4 \cdot 16$ (10)	4.61 (12)	-0.30 (7)	$0 \cdot 22$ (8)	$0 \cdot 09$ (9)
C(3)	2.50 (7)	$3 \cdot 68$ (8)	3.64 (10)	0.79 (7)	$0 \cdot 68$ (8)	$0 \cdot 65$ (8)
C(4)	2.66 (7)	$2 \cdot 36$ (7)	2.55 (8)	$0 \cdot 65$ (6)	$0 \cdot 34$ (7)	$0 \cdot 39$ (6)
C(5)	2.09 (6)	$2 \cdot 37$ (6)	$2 \cdot 15$ (7)	$0 \cdot 23$ (5)	-0.05 (6)	$0 \cdot 25$ (6)
C(6)	$2 \cdot 22$ (6)	1.95 (6)	$2 \cdot 26$ (8)	-0.08 (5)	0.05 (6)	0.02 (6)
C(7)	2.02 (6)	$2 \cdot 37$ (7)	2.33 (8)	-0.07 (5)	0.03 (6)	-0.13 (6)
C(8)	2.67 (7)	2.29 (7)	3.76 (10)	0.22 (6)	0.45 (8)	-0.11 (7)
C(9)	$3 \cdot 10$ (8)	$2 \cdot 12$ (7)	3.97 (11)	-0.07 (6)	$0 \cdot 33$ (8)	$0 \cdot 10$ (8)
$\mathrm{C}(10)$	$2 \cdot 65$ (7)	$2 \cdot 43$ (7)	2.98 (9)	-0.57 (6)	-0.15 (7)	0.01 (7)
C(11)	2.20 (7)	$2 \cdot 49$ (7)	$2 \cdot 13$ (8)	-0.06 (6)	$0 \cdot 11$ (6)	-0.08 (6)
C(12)	2.03 (6)	$2 \cdot 65$ (7)	$2 \cdot 60$ (8)	-0.12 (5)	-0.19 (6)	0.08 (7)
C(13)	2.21 (7)	$2 \cdot 72$ (7)	$3 \cdot 22$ (10)	-0.03 (6)	-0.09 (7)	-0.11 (7)
C(14)	4.05 (9)	$3 \cdot 31$ (8)	2.84 (10)	0.43 (8)	0.55 (9)	-0.24 (8)
C(15)	$4 \cdot 96$ (11)	4.64 (10)	$3 \cdot 88$ (11)	0.93 (9)	0.36 (11)	$1-28$ (9)
$\mathrm{O}(16)$	$5 \cdot 50$ (9)	6.47 (10)	$4 \cdot 22$ (8)	$0 \cdot 22$ (8)	2.54 (8)	0.82 (8)
O (17)	2.82 (5)	2.06 (5)	$3 \cdot 64$ (7)	-0.10 (4)	$0 \cdot 68$ (5)	-0.19 (5)
$\mathrm{O}(18)$	3.04 (5)	$4 \cdot 18$ (6)	$2 \cdot 31$ (6)	-0.77 (5)	$0 \cdot 34$ (5)	-0.25 (5)
$\mathrm{O}(19)$	$3 \cdot 55$ (6)	$2 \cdot 45$ (5)	$4 \cdot 16$ (7)	-0.44 (4)	$0 \cdot 49$ (6)	0.53 (5)
O(20)	$2 \cdot 24$ (5)	$4 \cdot 15$ (7)	$5 \cdot 09$ (9)	-0.52 (5)	$0 \cdot 20$ (6)	0.07 (7)

Table 4. Positional and isotropic thermal parameters (with estimated standard deviations) for the hydrogen atoms
The first two digits of the number for each H atom denote the number of the carbon or oxygen atom to which it is attached.

	x	y	z	B
H(011)	$0 \cdot 7370$ (17)	$0 \cdot 1710$ (7)	1.0059 (33)	2.04 (38)
H(021)	0.9372 (24)	$0 \cdot 1476$ (10)	$0 \cdot 8460$ (47)	$5 \cdot 68$ (67)
H(022)	$0 \cdot 9000$ (25)	$0 \cdot 1910$ (10)	$0 \cdot 6475$ (46)	$5 \cdot 91$ (68)
H(031)	$0 \cdot 9317$ (18)	$0 \cdot 0715$ (7)	$0 \cdot 6064$ (34)	$3 \cdot 38$ (46)
H(051)	$0 \cdot 7055$ (16)	0.0766 (7)	0.9304 (31)	1.90 (36)
H(061)	$0 \cdot 4694$ (16)	$0 \cdot 1101$ (7)	$0 \cdot 6741$ (29)	1.56 (35)
H(071)	05178 (18)	$0 \cdot 1350$ (8)	1-1424 (36)	2.73 (43)
H(081)	0.3638 (17)	$0 \cdot 2146$ (7)	1.0610 (31)	$2 \cdot 62$ (40)
H(082)	0.3608 (18)	$0 \cdot 1957$ (7)	$0 \cdot 8054$ (31)	$2 \cdot 76$ (41)
H(091)	0.5899 (18)	0.2456 (8)	1.0548 (34)	$3 \cdot 22$ (45)
$\mathrm{H}(092)$	0.5066 (18)	$0 \cdot 2726$ (8)	0.8334 (33)	$3 \cdot 18$ (45)
H(131)	$0 \cdot 1813$ (17)	$0 \cdot 1488$ (7)	1.0242 (34)	2.36 (39)
$\mathrm{H}(132)$	0.2156 (20)	$0 \cdot 1107$ (8)	0.8026 (39)	$3 \cdot 58$ (50)
H(141)	0.5711 (18)	0.0313 (8)	$0 \cdot 4503$ (36)	$3 \cdot 14$ (45)
H(142)	0.7114 (21)	0.0339 (8)	0.2917 (37)	$4 \cdot 33$ (54)
H(151)	0.6016 (22)	0.2638 (10)	$0 \cdot 4824$ (48)	$6 \cdot 17$ (66)
H(152)	0.7281 (23)	0.2136 (9)	$0 \cdot 4245$ (42)	$5 \cdot 36$ (62)
H(161)	$0 \cdot 9485$ (24)	0.0964 (11)	$0 \cdot 2885$ (47)	$5 \cdot 80$ (77)
H(181)	$0 \cdot 2550$ (21)	$0 \cdot 0794$ (9)	$1 \cdot 3714$ (41)	$5 \cdot 66$ (58)
H(201)	$0 \cdot 1198$ (24)	0.0386 (11)	0.9913 (51)	$9 \cdot 87$ (82)

Table 5．Observed and calculated structure factors
The five columns in each group list $k, 10 F_{o}, 10 F_{c}$ ，the phase angle $\left({ }^{\circ}\right)$ and $100 / \sigma\left(F_{o}\right)$ ．

茲

 2＊拟 ＝
运
 2

，
 5

－ロー～～～

 －

 －
 $\because 2$

Table 6. Interatomic distances involving hydrogen atoms
Estimated standard deviations are about $0.02 \AA$. The first two digits in each H identification number denote the 'heavy' atom to which H is attached.

$\mathrm{C}(1)-\mathrm{H}(011)$	$1.04 \AA$	$\mathrm{C}(9)-\mathrm{H}(092)$	$0.96 \AA \AA$
$\mathrm{C}(2)-\mathrm{H}(021)$	1.03	$\mathrm{C}(13)-\mathrm{H}(131)$	0.96
$\mathrm{C}(2)-\mathrm{H}(022)$	0.97	$\mathrm{C}(13)-\mathrm{H}(132)$	1.03
$\mathrm{C}(3)-\mathrm{H}(231)$	1.05	$\mathrm{C}(14)-\mathrm{H}(141)$	0.98
$\mathrm{C}(5)-\mathrm{H}(051)$	1.00	$\mathrm{C}(14)-\mathrm{H}(142)$	0.97
$\mathrm{C}(6)-\mathrm{H}(061)$	1.02	$\mathrm{C}(15)-\mathrm{H}(151)$	0.95
$\mathrm{C}(7)-\mathrm{H}(071)$	0.96	$\mathrm{C}(15)-\mathrm{H}(152)$	1.01
$\mathrm{C}(8)-\mathrm{H}(081)$	0.96	$\mathrm{O}(16)-\mathrm{H}(161)$	0.84
$\mathrm{C}(8)-\mathrm{H}(082)$	1.01	$\mathrm{O}(18)-\mathrm{H}(181)$	0.82
$\mathrm{C}(9)-\mathrm{H}(091)$	1.08	$\mathrm{O}(20)-\mathrm{H}(201)$	0.85

(a)

(b)

(c)

Fig. 2. (a) Atomic numbering scheme for solstitialin. (b) Interatomic distances between non-hydrogen atoms. Estimated standard deviations are $0.002-0.003 \AA$. (c) Bond angles. Estimated standard deviations are $0 \cdot 1-0 \cdot 2^{\circ}$.

The conformations of the three rings are similar to those found in a sesquiterpene derivative, 2-bromodi-hydroisophoto- α-santonic lactone acetate (Asher \& Sim, 1965), possessing the same basic ring system. The carbocyclic five-membered ring is 'envelope' shaped with $\mathbf{C}(5)$ as the 'flap' and, as expected, the lactone system is approximately planar with $C(7)$ out of the plane. No four atoms of the seven-membered ring lie in a plane; the best approximation is the least-squares plane through $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$. The relevant planes and atomic deviations from them are listed in Table 8. Packing diagrams are given in Fig. 3.
The lengths of the double bonds associated with the methylene groups exocyclic to the five- and sevenmembered rings (1.311 and $1.315 \AA$ respectively) are shorter than the generally accepted $1.335-1.340 \AA$ for the carbon-carbon double bond. While it is clear that a correction for thermal motion is in order here, we have found that the rigid body approximation is a poor one for the molecule as a whole and little better for the individual aliphatic rings. A model in which each exocyclic methylene carbon atom is supposed to 'ride' upon the ring carbon to which it is attached (Busing \& Levy, 1964) gives corrections of the right order of magnitude - C(4)-C(14) goes from 1.311 to $1.324 \AA$ and $C(10)-C(15)$ from 1.315 to $1.344 \AA$ - but these corrections do not take into account rigid body motion of both 'horse' and 'rider' and their validity is therefore questionable.

Of the bonds between carbon atoms which are both $s p^{3}$ hybridized, $\mathrm{C}(5)-\mathrm{C}(6)(1.515 \AA)$ is significantly shorter, and $\mathbf{C}(1)-\mathrm{C}(5)(1.559 \AA)$ significantly longer than the rest. No non-bonded steric repulsion model seems to explain why $\mathrm{C}(1)-\mathrm{C}(5)$ is extraordinarily long while $\mathbf{C}(7)-\mathrm{C}(11)$ is not. The large substituents are more nearly eclipsed in the latter case, as indicated by the relevant dihedral angles; $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{C}(12)$ is 25.9° and $\mathbf{C}(8)-\mathbf{C}(7)-\mathbf{C}(11)-\mathbf{C}(13)$ is 31.9° while the dihedral angle $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ is 33.9° and $\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ is $34 \cdot 7^{\circ}$. The abnormal lengths are, however, correlated to the angles subtended by the carbon or oxygen atoms at each end of the bonds in question; $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$ and $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ (116.1 and $115 \cdot 1^{\circ}$) are both large, indicating added p character in the $\mathrm{C}(1)-\mathrm{C}(5)$ bond while $\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ and $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{O}(17)$ are both small, ($104 \cdot 1$ and $105 \cdot 3^{\circ}$) corresponding to lessened p character in the $\mathrm{C}(5)-\mathrm{C}(6)$ bond.

Rather surprisingly, no intramolecular hydrogen bonding is found in crystalline solstitialin despite the heavy concentration of donors and acceptors in the area of the lactone ring. Intermolecular hydrogen bonding is of two types: (a) from the hydroxyl group $\mathrm{O}(16)$ to the hydroxyl group $\mathrm{O}(20)$ in which the distance $\mathrm{H}(161)-\mathrm{O}(20)$ is $2.14 \AA$, and the $\mathrm{O}(16)-\mathrm{O}(20)$ distance $2.875 \AA$; (b) an unusual pattern in which the lactone carbonyl oxygen atom, $\mathrm{O}(19)$, is associated with $\mathrm{H}(181)$ of one neighboring molecule and $\mathbf{H}(201)$ of another, one above, and one below the plane of the
lactone group at $\mathrm{O} \cdots \mathrm{H}$ distances of 2.26 and $2.40 \AA$ respectively.

In solution, intermolecular hydrogen bonds to carbonyl groups are generally supposed to involve the non-bonding (' n ') electrons of the carbonyl group, having bonding directions in the plane of the bonds of the carbonyl carbon atom. A study of intramolecular hydrogen bonding in hydroxyketones (Joris \& Schleyer, 1968) strongly suggests that ' n '-type bonding occurs when geometry permits. Evidence for hydrogen bonding directed outside the plane of the carbonyl group was found only when molecular geometry required the $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}$ angle to be acute. These kinds of hydrogen bonding are associated with a modest lowering of the carbonyl frequency by $3-25 \mathrm{~cm}^{-1}$ (Bellamy, 1968) even when there is evidence of two hydrogen bonds per carbonyl group (Whetsel \& Kagarise, 1962).

No such clear directional preferences are evident in hydrogen bonding to carbonyl groups in crystals (Donohue, 1968). In solstitialin the planes defined by $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}\left(181^{\prime}\right)$ and $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}\left(201^{\prime}\right)$ lie at angles of about 60 and 65° respectively, to the plane of the carbonyl carbon bonds, with the angles $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}$ being obtuse. This situation would be expected to increase the
electron density in the π^{*} molecular orbital by polarization, thereby giving rise to a marked decrease in the carbonyl stretching frequency. That such is the case is attested to by the lowering of this frequency by 30 cm^{-1} in the crystal relative to that observed in pyridine solution. [The intermolecular $\mathrm{O}(19) \cdots \mathrm{O}\left(18^{\prime}\right)$ distance is $2.99 \AA$ and $\mathrm{O}(19) \cdots \mathrm{O}\left(20^{\prime}\right)$ is $3.04 \AA$.] The same effect, only more pronounced, is found in 4-hydroxycoumarin hydrate (Gaultier \& Hauw, 1966) which shows a similar hydrogen-bonding pattern with intermolecular O ...O distances of 2.73 and $2.80 \AA$; the carbonyl stretching frequency of the solid is $1664 \mathrm{~cm}^{-1}$ as compared with $1730 \mathrm{~cm}^{-1}$ in dioxan solution (Farmer, 1959).

The absolute configuration

It has been shown (Hope \& de la Camp, 1969) that the anomalous scattering of $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation by oxygen can be utilized for the determination of absolute configurations of molecules containing only oxygen and lighter elements.

The good agreement between observed and calculated structure factors for the present structure indicated that it would be worthwhile to attempt a deter-

Table 7. Bond angles involving hydrogen atoms

ated standard deviations are 1-2 ${ }^{\circ}$.			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(011)$	111°	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(081)$	110°
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{H}(011)$	107	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(082)$	108
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{H}(011)$	107	$\mathrm{H}(081)-\mathrm{C}(8)-\mathrm{H}(082)$	105
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(021)$	109	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(091)$	108
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(022)$	113	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(092)$	108
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(021)$	110	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(091)$	107
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(022)$	112	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(092)$	109
$\mathrm{H}(021)-\mathrm{C}(2)-\mathrm{H}(023)$	104	$\mathrm{H}(091)-\mathrm{C}(9)-\mathrm{H}(092)$	109
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(031)$	110	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(131)$	106
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(031)$	109	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(132)$	112
$\mathrm{O}(16)-\mathrm{C}(3)-\mathrm{H}(031)$	110	$\mathrm{O}(20)-\mathrm{C}(13)-\mathrm{H}(131)$	108
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(051)$	106	$\mathrm{O}(20)-\mathrm{C}(13)-\mathrm{H}(132)$	114
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(051)$	108	$\mathrm{H}(131)-\mathrm{C}(13)-\mathrm{H}(132)$	106
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(051)$	109	$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{H}(141)$	122
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(061)$	113	$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{H}(142)$	119
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(061)$	109	$\mathrm{H}(141)-\mathrm{C}(14)-\mathrm{H}(142)$	119
$\mathrm{O}(17)-\mathrm{C}(6)-\mathrm{H}(061)$	106	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(151)$	116
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(071)$	108	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(152)$	118
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(071)$	111	$\mathrm{H}(151)-\mathrm{C}(15)-\mathrm{H}(152)$	125
$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{H}(071)$	106	$\mathrm{C}(3)-\mathrm{O}(16)-\mathrm{H}(161)$	101
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(081)$	109	$\mathrm{C}(11)-\mathrm{O}(18)-\mathrm{H}(181)$	107
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(082)$	110	$\mathrm{C}(13)-\mathrm{O}(20)-\mathrm{H}(201)$	105

Table 8. Least-squares planes
The normal equations are given. Deviations are in \AA. Planes are defined by atoms given before slash (/).
(1)

Deviations:

$$
2 \cdot 9607 x-13.4955 y+4.3802 z=3 \cdot 6082
$$

(2)

Deviations:
(3)

Deviations:

$$
\begin{gathered}
\mathrm{C}(1),-0.010 ; \mathrm{C}(2), 0.016 ; \mathrm{C}(3),-0.016 ; \mathrm{C}(4), 0.010 / \mathrm{C}(5), 0.529 ; \mathrm{C}(14),-0.376 \\
6.8238 x-0.0254 y+4.2745 z=7.0086 \\
\mathrm{C}(6), 0.029 ; \mathrm{O}(17),-0.035 ; \mathrm{C}(12),-0.002 ; \mathrm{O}(19), 0.021 ; \mathrm{C}(11),-0.013 / \mathrm{C}(7), 0.447 . \\
1.9460 x-2.1557 y+5.7057 z=5.7279
\end{gathered}
$$

Fig.3. Packing diagrams: (a) projection along [001]; (b) projection along [100]. Dots represent H atoms and dashed lines bonding or bridging to O atoms.
mination of the absolute configuration of solstitialin.
The function $\left.D=\left[\left|F_{c}(h k l)\right|-\mid F_{c}(\bar{h} \bar{l})\right]\right]^{2} / \sigma^{2}\left[F_{o}(h k l)\right]$ was used to select reflections with the highest probability of observable differences $F(h k l)-F(\bar{h} \bar{k} \bar{l})$ (Hope \& de la Camp, 1969). At the time of the data collection we did not find sufficient reason for gathering a complete set of Bijvoet pairs, and we therefore cannot carry out actual comparisons of $F_{o}(h k l)$ and $F_{o}(h \bar{k} \bar{l})$. We feel, however, that our application of the R index comparison method (Ibers \& Hamilton, 1964) provides ample evidence for the correct absolute configuration.

From the observed data were selected two sets of
reflections corresponding to two cut off levels in D, giving the 147 and 49 'most sensitive' reflections respectively. For the 147 reflections R for the two enantiomorphs are 0.0244 and 0.0250 respectively, whereas the corresponding results for the set of 49 reflections are 0.0220 and 0.0235 . Since the refinement of the structure had been carried out without the real part (Δf^{\prime}) of the anomalous correction terms, these were also not included in the calculations of D. The imaginary terms ($\Delta f^{\prime \prime}$) were calculated from Hönl's formula, giving $\Delta f_{\mathrm{C}}^{\prime \prime}=0 \cdot 010$, and $\Delta f_{\mathrm{O}}^{\prime \prime}=0.032$.

The configuration which in both cases led to the
lower R index is given by $(1 R, 3 S, 5 R, 6 R, 7 R, 11 R)$ in the notation of Cahn, Ingold \& Prelog (1956). A conventional graphical representation of the configuration is also given in Fig.4. Thus solstitialin possesses the R configuration at $\mathrm{C}(7)$ in accordance with the majority of guaiane and eudesmane sesquiterpenoids. Exceptions in both series are known, however (Ishii, Tozyo \& Minato, 1968; Meshawari, Jain, Bates \& Bhattacharyya, 1963). The junction between the sevenand five-membered carbocyclic rings is cis $(1 R, 5 R)$ as predicted from the assumption that guaianes are produced in the plant by cyclization of a ten-membered ring precursor (Hendrickson, 1959).

Computing procedures

Most of the computer programs used in this study have been described elsewhere (Hope \& Christensen, 1968). The phase determination program PHASEM, written by M. G. B. Drew, was used with only a minor modification to allow packing of data. The program can be used to determine initial approximate phases expressed in terms of 'symbols' by use of the symbolic addition method (Karle \& Karle, 1966b) and can refine a set of phases by the tangent formula, given numerical values for the symbols. The program used to select reflections for the absolute configuration determination was written by H. Hope \& U. de la Camp.

The least-squares program minimizes the function $S=\sum w_{i}\left(F_{o}-F_{c}\right)_{i}^{2}$ by a full-matrix procedure, where the functional form of the weight w is (within limits) determined by input parameters. The form factors for carbon and oxygen are those given by Hanson, Herman, Lea \& Skillman (1964), and for hydrogen those of Stewart, Davidson \& Simpson (1965). The isotropic temperature factors are of the form $\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$ and the anisotropic of the form $\exp \left(-\frac{1}{4} h^{2} a^{* 2} B_{11}-\right.$ $\ldots-\frac{1}{2} k l b^{*} c^{*} B_{23}$). The R index is defined by $R=$ $\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$. All calculations were performed on an IBM 7044 computer.

This work has been supported through grants from the National Science Foundation.

References

Asher, J. D. M. \& Sim, G. A. (1965). J. Chem. Soc. p. 1584. Bellamy, L.S. (1968). Advances in Infrared Group Frequencies, p. 152. London: Methuen.

Fig.4. Conventional structure formula for solstitialin, with indication of absolute configuration.

Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142. Cahn, R. S., Ingold, C. K. \& Prelog, V. (1956). Experientia, 12, 81 .
Cordy, D. R. (1954). J. Neuropath. 13, 330.
Donohue, J. (1968). In Structural Chemistry and Molecular Biology, p. 443. Ed. A. Rich \& N. Davidson. San Francisco: Freeman.
Farmer, V. C. (1959). Spectrochim. Acta, 10, 870.
Fowler, M. E. (1965). J. Amer. Vet. Med. Assoc. 147, 607. Gaultier, J. \& Hauw, C. (1966). Acta Cryst. 20, 646.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Hendrickson, J. B. (1959). Tetrahedron, 7, 82.
Hönl, H. (1964). Ann. Phys. Lpz. 18, 625.
Hope, H. \& Christensen, A. T. (1968). Acta Cryst. B24, 375.

Hope, H. \& de la Camp, U. (1969). Nature, Lond. 221, 54. Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Ibers, J. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781. Ishi, H., Tozyo, T. \& Minato, H. (1968). Chem. Comm. p. 106.

Joris, L. \& Schleyer, P. v. R. (1968). J. Amer. Chem. Soc. 90, 4599.
Karle, I. L. \& Karle, J. (1966a). Acta Cryst. 20, 555.
Karle, J. \& Hauptman, H. (1956). Acta Cryst. 9, 635.
Karle, J. \& Karle, I. L. (1966b). Acta Cryst. 21, 849.
Kim, S. H., Jeffrey, G. A., Rosenstein, R. D. \& Corfield, P. W. R. (1967). Acta Cryst. 22, 733.

Meshawari, M. L., Jain, T. C., Bates, R. B. \& Bhattacharyya, S. C. (1963). Tetrahedron, 19, 1079.
Mettler, F. A. \& Stern, G. M. (1963). J. Neuropath. 22, 164.

Oh, Y. L. \& Maslen, E. N. (1968). Acta Cryst. B24; 883.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Suchy, M., Samek, Z., Herout, V. \& Šorm, F. (1965). Coll. Czech. Chem. Comm. 30, 3473.
Thiessen, W. E., Hope, H., Zarghami, N., Heinz, D. E., Deuel, P. \& Hahn, E. A. (1969). Chem. \& Ind. p. 460.
Whetsel, K. B. \& Kagarise, R. E. (1962). Spectrochim. Acta, 18, 315.

[^0]: * Present address: Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.

